All Publications

Ethical and Legal Challenges of AI in Healthcare

AI is nothing new in healthcare and has actually aided in it significantly – making it more personalized, while also improving quality of care and patient outcomes.

However, like any new development, it is coupled with its own challenges. We previously touched on the ethical and legal challenges of AI in general. There are guidelines and regulations in the deployment of AI systems, especially because of the sensitive data involved. It’s likewise important to consider this in the field of healthcare especially. We now have algorithms that improve diagnoses, reduce margins of error, chatbots that record symptoms and recommend cures, tools that identify the likelihood of diseases, surgical robots, and wearable health trackers. There are set to be even more advancements in the coming years, which may urge us to take a step back and first assess the trust placed in these innovations.

Imperfect Algorithms
Large volumes of data are analyzed by machines to find connections and patterns – but how can we account for the data used? At times, algorithms can be based on hypothetical data. Biases can also complicate the issue, and the health sector is known for its implicit biases. Training algorithms based on these biases can further exacerbate them, making them even more profound as medical practitioners are becoming more reliant on these models. To make algorithms in healthcare more comprehensive, algorithms need to be trained on data from diverse demographics. Failure to get more representative samples can cause these algorithms to do more harm than good, as this will lead to inaccurate predictions and recommendations.

Data Privacy
Wearable technologies are used to keep track of health, sleep, and fitness goals. They have drastically changed the meaning of personal health, giving us the data we need in real-time for professionals to interpret later on. These tiny gadgets run on printed circuit boards (PCBs) that provide them with all their advanced functions. A lot of thought, engineering, and design expertise go into today’s multi-board PCB design due to their compact nature – especially for complex next-generation devices. However, experts also recommend that wearers of these devices err on the side of caution. Manufacturers of these wearables keep a centralized database containing information from their buyers. To safeguard your privacy, it’s recommended to review the device’s privacy policy and to switch off default settings that publicly share information. As we wait for wearables to mature and comply with more standardized regulations, find the middle ground between monitoring your personal health while also protecting it.

Liability Issues
Implementing AI in healthcare could have serious legal ramifications if the proper precautions are not taken. When diagnoses or treatments are deployed based on AI models and these result in malpractice or misdiagnoses, you may wonder which entity is held liable – the hospital, health professional, or the manufacturer of the algorithm. It’s without question that these need to be ironed out, as technicalities like “black box medicine” can enter the conversation. As intelligent as some machines and algorithms are, there is still a possibility for mistakes to occur. Humans are prone to error, as are the machines that they train. When methods for computation are opaque – which they are, in many cases – we may be unable to trace how decisions were made. For this very reason, greater transparency among stakeholders needs to be enforced. It is only until then that we may be able to be more trusting of these technologies.

AI in healthcare is not without its challenges. However, with careful consideration, more stringent assessments, and better regulations, we may grow more accustomed to accepting the good that AI has to offer in improving the landscape of healthcare.

Content exclusively written for - By Alexis Mitchell

Artificial Intelligence (AI) Healthcare
Subscribe for updates

Your subscription was successful! Kindly check your mailbox and confirm your subscription. If you don't see the email within a few minutes, check the spam/junk folder.

Connect with us
ABBYY Timeline

Raise your Process IQ